

NU402

20~65mA Single channel LED Driver

Features

- LED drive current of 20mA
- Output current adjustable up to 65mA with external resistor
- Supply voltage up to 40V
- Easy paralleling of drivers to increase current
- Low voltage overhead of 1.4V
- High current accuracy at supply voltage variation
- High power dissipation of 400mW
- Reduced output current at higher temperatures Negative thermal coefficient of -0.5% / K

Product Description

NU402 is a small power linear current regulation component that can be easily used in various LED lighting applications. It is equipped the excellent feature of good load/line regulation capability, minimized chip current skew, stable output current in high power or load voltage fluctuating environment that can be used in wide area of LED lighting source to maintain the uniformity of light intensity.

Block Diagram

Applications

- General LED lighting
- Decoration lighting for architecture
- RGB lighting
- RGB display / indicator

Package Type

• SOT 23-6 (Part No.: NU402)

Terminal Description

Pad N	Pin name	Function	
1	GND	Power Ground	
2,3,5	OUT	Regulated Output Current	
4	Vs	Supply Voltage	
6	R _{EXT}	External resistor for	
		adjusting Output Current	

NumEn Tech.

Maximum Ratings at T_A = 25°C

Parameters	Symbol	Value	Unit
Max Supply voltage	Vs	42	V
Max Output current	lout	65	mA
Max Output voltage (at Vs=40V)	Vout	38	V
Reverse voltage between all terminals	VR	0.5	V
Reverse voltage between all terminals	Ptot	400	mW
Max junction temperature	Tj	150	V
Thermal resistance (Junction-soldering point)	RthJS	50	K/W
Operating Temperature, Ts	Тор	-40~+125	V
Operating Supply voltage rang (at Iout>18mA, Vs-Vout =1.4V)	Vs	5~40	V

Electrical Characteristics at $T_A = 25 \circ C$, Rext = Open

Parameters	Conditions	Symbol	Value		Unit	
			Min.	Тур.	Max.	
Collector-emitter breakdown voltage	Ic=1mA, Ib=0	VBR(CEO)	40			V
Supply Current	Vs=10V	Is	340	440	540	uA
DC current gain	Ic=50mA, Vce=1V, Rext=0 Ohm	hFE	100	140	470	-
Internal Resistor	IRint =20mA	Rint	37	44	53	Ohm
Output Current	Vs=10V, Vout=8.6V	Iout1	18	20	22	mA
Voltage drop (Vs-VE)	Iout=Iout1	Vdrop	0.83	0.88	0.93	V
Output current change versus T _A	Vs=10V, (Vs-Vout) =1.4V	Alout/Iout1		-0.5		%/K
Output current change versus Vs	Vs= 10V40 V, (Vs- Vout)=1.4V	Alout/lout1		1		%/V

Output Current Setting

The output current of NU402 is set by an external resistor (R_{EXT}). The output current can be figured out by following equation. Iout (A)=0.9V/Rext +(Ω)+20mA Example: I_{OUT} = 60mA Rext=0.90.06-0.02(A)=22.5 (Ω)

Typical Characteristics

Fig.1 Permissible total power dissipation $Ptot = f(T_S)$

Fig. 2 Output current vs Supply voltage Vs-Vout=1.4V

Fig. 4 Output Current vs Supply Voltage T_J as Parameter, $(V_S-V_{OUT})=1.4V$

Fig. 5 Supply Current vs Supply Voltage

Typical Application Circuit

• DC power general lighting 1

R_G: power supply transition slow down resistor

• DC PWM dimming application

• DC power general lighting 2

• DC power dimming application

Package Dimensions

• SOT 23-6

SYMBOLS	DIMENSIONS IN MILLIMETERS				
51MBOL5	MIN	NOM	MAX		
А	1.00	1.10	1.40		
A1	0.00		0.10		
A2	1.00	1.10	1.30		
A3	0.70	0.80	0.90		
b	0.35	0.40	0.50		
C	0.10	0.15	0.25		
D	2.70	2.90	3.10		
E1	1.40	1.60	1.80		
e1		1.90(TYP)			
E	2.60	2.80	3.00		
L	0.37				
θ1	1°	5°	9 °		
e		0.95(TYP)			
L1	0.5	0.6	0.7		

Restrictions on product use

- NUMEN Tech. reserves the right to update these specifications in the future.
- The information contained herein is subject to change without notice.
- NUMEN Technology will continually working to improve the quality and reliability of its products. Nevertheless, semiconductor device in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing NUMEN products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such NUMEN products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that NUMEN products are used within specified operating ranges as set forth in the most recent NUMEN products specifications.
- The NUMEN products listed in this document are intended for usage in general electronics applications (lighting system, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These NUMEN products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of NUMEN products listed in this document shall be made at the customer's own risk.